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The formula of weak-field magnetoconductivity (B) proportional to B2, with B the strength of a magnetic field, 
is derived based on the linear-response formula of the conductivity. In order to achieve expansion with respect 
to B, we first consider spatially varying magnetic field Bcos(qx) with wavenumber q, then expand the Kubo 
formula of the conductivity with respect to B up to B2, and finally expand the results with respect to q up to q2 [1]. 
This is a straightforward extension of the scheme developed for the weak-field Hall conductivity [2-9] except that 

the procedure is much more complicated. Then, (B) is represented by Feynman diagrams given by three 
hexagons in graphene systems, in which a matrix Hamiltonian contains terms linear in the wave vector. 
 
Explicit calculations are performed within a self-consistent Born approximation for various kinds of scatterers in 

monolayer [10] and bilayer graphene [11]. The results show that the magnetoresistance (B)  B2 essentially 
vanishes away from the zero energy. This vanishing magnetoresistance is the result of the well-known 
cancellation with the counter term due to the Hall effect away from the zero energy. In the vicinity of zero energy, 
on the other hand, the magnetoresistance exhibits a sharp double-peak structure. This prominent feature arises 
due to the band crossing, i.e., an electron behaves partially as a negatively charged particle and also as a 
positively charged particle in the vicinity of zero energy. In monolayer graphene, the divergence of the classical 

cyclotron frequency c  F-1 also contributes to the enhancement of the double-peak structure. 
 
This formula is extended to the case that the diagonal element of a matrix Hamiltonian contains a term 
proportional to k2, i.e., k2/2m with mass m. Then, the result can be used in more general systems described by 
a k  p Hamiltonian based on the modified Bloch functions of Luttinger and Kohn [12]. The formula contains 
Feynman diagrams given by pentagons in addition to the hexagons in graphene systems [13]. It is used for 
calculation of singular magnetoresistance at the band crossing point of a two-dimensional system with a giant 
Rashba spin splitting. 
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Figure 1: Calculated magnetoresistivity and zero-field conductivity in monolayer graphene in the case of dominant 
charged-impurity scattering. The carrier concentration is measured in units of impurity concentration ni. Corresponding 
Boltzmann results are denoted by thin lines [10]. 

 

 
 
Figure 1: Calculated magnetoresistivity and zero-field conductivity in bilayer graphene in the case of dominant charged-

impurity scattering. The energy is measured in units of the interlayer hopping integral 1. Corresponding Boltzmann results 
are denoted by thin lines [11]. 


